
18/9/2007 I2A 98 slides 1 1 Richard Bornat
Dept of Computer Science

Introduction to Algorithms
1998

Short name I2A

Lectures by Richard Bornat

Labs by Colin Blackett, Richard Bornat
and Peter O’Hearn

all lectures in PP1 (Tuesdays 10 till 12)
(with a couple of breaks for the sake of humanity ...)

labs Tuesdays 2-6 in ITL.

Book of the course will be “Data Structures and
Problem Solving using Java” by Weiss, published
by Addison-Wesley; it isn’t quite available at the

time of writing.

18/9/2007 I2A 98 slides 1 2 Richard Bornat
Dept of Computer Science

To see a world in a grain of sand,

And heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.

William Blake: Auguries of Innocence

He that would do good to another man must do it in Minute

Particulars,

General Good is the plea of the scoundrel, hypocrite and flatterer,

For Art and Science cannot exist but in minutely organised

Particulars.

William Blake: Jerusalem

He who shall teach the child to doubt,

The rotting grave shall ne’er get out.

William Blake: Auguries of Innocence

18/9/2007 I2A 98 slides 1 3 Richard Bornat
Dept of Computer Science

To follow this course:

• you should know how to program (and/or be
willing to learn quickly);

• you should know some algebra and some
arithmetic (and/or be willing to learn quickly);

• you should know some predicate calculus
(and/or be willing to learn quickly).

18/9/2007 I2A 98 slides 1 4 Richard Bornat
Dept of Computer Science

You should already understand:

• that nobody can teach you anything, but that
you can learn if you are shown what you need
to learn;

• that technical language conveys complicated
ideas concisely, and sometimes is the only
language which can convey those ideas at all;

• that asking questions is a sign of intelligence,
not a sign of ignorance;

• that if you think hard enough about a topic
(recursion, induction, logic, arithmetic, ...), and
talk about it enough, the ideas will come to
you;

• that you came to University to do difficult
things (if you had wanted to do easy things, you
could have stayed at home and read Ladybird
books).

This course will be challenging. Challenging courses are what
university study is all about.

18/9/2007 I2A 98 slides 1 5 Richard Bornat
Dept of Computer Science

Introduction to Algorithms?

‘Old Algorithm’ (Al-Khowezmi) invented long-
(addition, subtraction, multiplication, division).

The numeral system used in Europe is still called ‘Arabic’ to
distinguish it from the earlier ‘Roman’ stick-counting system.

Numeral system, not number system. There’s a difference,
and it’s important.

Hence ‘a procedure which you can follow without
necessarily understanding it’;

hence ‘a computer program for solving a problem’;

because computers can’t understand anything

hence ‘the design of a computer program for solving a
particular problem in general’.

So our algorithms are actually programs, well-known
and well-understood solutions to well-known
problems.

18/9/2007 I2A 98 slides 1 6 Richard Bornat
Dept of Computer Science

Correctness and Efficiency

Our two concerns will be correctness and efficiency –
roughly “what a program does” and “how easily it
does it”.

In looking at correctness we shall be (semi-) formal
when specifying what a program should do, and
informal when proving that it does it.

In looking at efficiency we shall use arithmetic and
algebra, very simply.

Our programs will be small. We shall look at the
properties of

• assignment instructions;

• sequences of instructions;

• repetition (for and while)

plus, occasionally, recursion.

For the first half of the course, at least, we shall
concentrate on programs that manipulate arrays.

18/9/2007 I2A 98 slides 1 7 Richard Bornat
Dept of Computer Science

Correctness matters more than efficiency

The famous Landin diagram shows various ways of
making a fast correct program.

problem

fast, correct
program

fast program

correct
program

a

bc

d

Computer scientists claim that route ab is
easier/better/more effective than cd.

18/9/2007 I2A 98 slides 1 8 Richard Bornat
Dept of Computer Science

An example. Moving a section of an array.

I suppose that I have an array which looks like this:

! " # $ % & ' () * +,

and I want to shift some of the elements (for example,
all those from the one which contains $ up to the one
which contains () rightwards one position.

I might draw the effect on the array so:

$ % & ' (,

That picture doesn’t say enough, because it doesn’t
talk about the rest of the array.

18/9/2007 I2A 98 slides 1 9 Richard Bornat
Dept of Computer Science

As well as moving those elements, I should like to
leave the rest of the array unchanged. The effect I
want is:

$ % & , ' (! " # * +?

Here’s a different version of the specification:

before

after

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

! " # $ % & ' () * +,

$ % & , ' (! " # * +?

Numbering the elements will help to make it a little
more abstract.

18/9/2007 I2A 98 slides 1 10 Richard Bornat
Dept of Computer Science

The picture says nothing about what happens outside
the world of array elements 0 to 11.

that’s a general problem with specifications, whether pictures,
predicate calculus, whatever.

The picture describes how things finish up (the ‘after’
picture) in terms of how they start out (the ‘before’
picture).

In technical terms, a post-condition and a pre-
condition.

18/9/2007 I2A 98 slides 1 11 Richard Bornat
Dept of Computer Science

Specifying the array shifter in predicate
calculus

I am going to write a single formula, combining pre-
and post-condition for the time being.

We deal with the pre/post distinction by describing
the ‘pre’ array as A, and the ‘post’ array as !A .

![] = []" ![] = []" ![] = []"
![] = []" ![] = []" ![] = []"
![] = []" ![] = []" ![] = []"
![] = []" ![] =

A A A A A A
A A A A A A
A A A A A A
A A A A

0 0 1 1 2 2
4 3 5 4 6 5
7 6 8 7 9 8
10 10 11 1111[]

18/9/2007 I2A 98 slides 1 12 Richard Bornat
Dept of Computer Science

In specifications, the analogue of repetition is
quantification.

We have two standard kinds of remark:

• # $ < % []()()j i j k P A j – read as ‘all the A j[]s
such that i j k$ < have property P’, or ‘ all the
A j[]s in the range i k.. &1 have property P’, or
‘all the elements A i A i A k[] +[] &[], , ,1 1K share
property P’;

• ' $ < " []()()j i j k P A j – read as ‘at least one of
the A j[]s such that i j k$ < has property P’, or
‘ at least one of the A j[]s in the range i k.. &1
has property P’, or ‘at least one of the elements
 A i A i A k[] +[] &[], , ,1 1K has property P’.

The % in the # remark, and the " in the ' remark, are not
accidental. Review your knowledge of the predicate calculus if
you don’t understand the distinction.

18/9/2007 I2A 98 slides 1 13 Richard Bornat
Dept of Computer Science

#

$ < % ![] = []()"
$ < % ![] = &[]()"
$ < % ![] = []()

(

)

*
*

+

,

-
-

i
i A i A i
i A i A i
i A i A i

0 3
4 10 1
10 12

Technically this is a remark about every possible
integer value of i (it says #i), which says something
specific about values 0, 1, 2, 4, ..., 9, 10 and 11 and
manages to say nothing specific about values less than
0, greater than 11 or exactly 3.

It doesn’t say ‘and that’s all there is to say’: there
might be more.

the picture specification had the same problem ...

18/9/2007 I2A 98 slides 1 14 Richard Bornat
Dept of Computer Science

You should be well aware that there are two obvious
guesses for the array shifting program

The guesses are:

i A A A A A A4 3 5 4 9 8[] = [] [] = [] [] = []; ;K

ii A A A A A A9 8 8 7 4 3[] = [] [] = [] [] = []; ;K

(i) doesn’t work but (ii) does, and the difference has
to do with the properties of the assignment
instruction.

18/9/2007 I2A 98 slides 1 15 Richard Bornat
Dept of Computer Science

Definition of the assignment instruction

The instruction x E= , pronounced x becomes E,

curse the inventors of C for using the symbol ‘=’ to mean
‘becomes’, and curse the inventors of Java for copying them.

has a simple mechanical reading: calculate the value
of E and then put a copy in variable x.

It follows that the instruction x y= , where x and y are
variables, makes x and y the same. So does y x= .

One effect of the assignment instruction x E= is to
obliterate the previous value of x – so x y=
obliterates x, and y x= obliterates y.

We can’t obliterate values, only copies of values.

x E= obliterates a single copy of a value – the copy
stored in x – and x y= makes a new copy of a value –
the copy stored in y – as well as obliterating the copy
which used to be stored in x.

these fine distinctions matter: there is a real difference
between a copy of a book and the book itself.

18/9/2007 I2A 98 slides 1 16 Richard Bornat
Dept of Computer Science

So A A4 3[] = [] makes a copy of the value in A 3[] and
obliterates the copy of the value in A 4[], and if we
need that value and have no other copies we are in
trouble ...

18/9/2007 I2A 98 slides 1 17 Richard Bornat
Dept of Computer Science

That’s what’s wrong with program (i):
 A A A A A A4 3 5 4 9 8[] = [] [] = [] [] = []; ;K . It obliterates
each value A A A4 5 9[] [] [], , ,K in turn, finally replacing
them all with a copy of what was originally in A 3[].
Its effect can be pictured:

before

0 1 2 3 4 5 6 7 8 9 10 11

after A [4]=A[3]

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

after A [5]=A[4]

finally

...

! " # $ % & ' () * +,

! " # $ $ & ' () * +,

! " # $ $ $ ' () * +,

! " # $ $ $ $ $ $ * +$

18/9/2007 I2A 98 slides 1 18 Richard Bornat
Dept of Computer Science

By contrast, program (ii) obliterates only copies of
values that aren’t needed.

after A [9]=A[8]

0 1 2 3 4 5 6 7 8 9 10 11

! " # $ % & ' ((* +,

after A [8]=A[7]

0 1 2 3 4 5 6 7 8 9 10 11

! " # $ % & ' ' (* +,

.. and so on, until
0 1 2 3 4 5 6 7 8 9 10 11

finally! " # $ $ % , ' (* +&

Note that the fourth position is unchanged from its initial
value. Should we add that to the specification? I think not.

18/9/2007 I2A 98 slides 1 19 Richard Bornat
Dept of Computer Science

We would almost certainly write our solutions as
repetitions:

i' for (i=4; i<10; i++) A[i]=A[i-1];

ii' for (i=9; i>3; i--) A[i]=A[i-1];
Unfortunately, program (i') – although it is wrong – looks as if
it comes straight from the predicate calculus specification

#

$ < % ![] = []()"
$ < % ![] = &[]()"
$ < % ![] = []()

(

)

*
**

+

,

-
--

i

i A i A i

i A i A i

i A i A i

0 3
4 10 1
10 12

whereas program (ii') – which is correct – isn’t such an
obvious translation.

18/9/2007 I2A 98 slides 1 20 Richard Bornat
Dept of Computer Science

Definition of the for instruction

The for instruction

for (INIT; COND; INC) BOD

has a simple mechanical definition, which is easily
given as a flowchart:

INIT

COND?

BOD

INC

start

finish

18/9/2007 I2A 98 slides 1 21 Richard Bornat
Dept of Computer Science

Every for is equivalent to the sequence
<INIT, COND, <BOD, INC, COND>*>.

or to <INIT, <COND,BOD, INC>*, COND>

In the case of program (ii'):

i=9; if (i>3) { A[i]=A[i-1]; i--; ... }

from which we can deduce

informally, knowing that 9>3

that there will be a first execution of BOD, and that it
will be equivalent to A[9]=A[9-1].

In the case of program (i'):

i=4; if (i<10) { A[i]=A[i-1]; i++; ... }

and it’s clear that the first instruction will be
A[4]=A[4-1].

It’s fairly easy to see, from the mechanical definition,
that the two programs (i) and (ii) are equivalent to (i')
and (ii').

is it so easy? Can you do the calculations? How would you lay
out your working?

18/9/2007 I2A 98 slides 1 22 Richard Bornat
Dept of Computer Science

The ‘cost’ of executing a program

Suppose that in order to execute a program you had to
rent a computer.

You would have to pay for the time you used, and the
memory space you used.

The same if you have to buy a computer.

We begin with the simplest example: the cost, in time
and space, of the assignment instruction A[i]=A[i-1].

Knowing the address of array A, and the address of
variable i, what does a machine have to do to carry
out the assignment?

MOVE i, r1 // copy i to reg 1
SUB %1, r1 // value of i-1 in reg 1
ADD %A, r1 // address of A[i-1] in reg 1
MOVE i, r2 // copy i to reg 2
ADD %A, r2 // address of A[i] in reg 1
MOVE (r1), (r2) // copy from A[i-1] to A[i]

That takes three moves, two adds, one subtract.

18/9/2007 I2A 98 slides 1 23 Richard Bornat
Dept of Computer Science

A more efficient version:

MOVE i, r1 // copy i to reg 1
ADD %A, r1 // address of A[i] in reg 1
MOVE r1, r2 // address of A[i] in reg 2
SUB %1, r1 // value of A[i-1] in reg 1
MOVE (r1), (r2) // copy from A[i-1] to A[i]

using autodecrement or autoincrement wouldn’t help, because
it would cause an extra subtraction or addition.

Modern computers are designed so that arithmetic
and store access are constant-time operations.

even quite recently that wasn’t the case. Many desktop
machines, even ten years ago, didn’t have constant-time
multiplication or division.

From all this we can deduce that the time and space
used by A[i]=A[i-1] doesn’t depend on the value of i
or on any of the values stored in array A. It takes
some constant Ta time and uses no additional space at
all.

18/9/2007 I2A 98 slides 1 24 Richard Bornat
Dept of Computer Science

So the cost of executing program (ii) –
 A A A A A A9 8 8 7 4 3[] = [] [] = [] [] = []; ;K – is just
6 × Ta1 in time, where Ta1 is the cost of each of the
assignment instructions, and nothing at all in space.

Ta1 will be smaller than Ta. Can you see why?

The cost of executing program (ii') –
for (i=9; i>3; i--) A[i]=A[i-1];

is a little more because it uses a for instruction and a
more complicated assignment.

It consists of the cost of executing six assignment
instructions from the body (each costing Ta in time
and nothing in space), plus the cost of the initial
assignment i=9, plus the cost of the initial test i>3,
plus the cost of six increments i-- and six more tests
i>3, plus the cost of six or seven jumps.

Can you see where the jumps come from? Look at the
flowchart.

Program (ii') also uses more space than program (ii),
because it needs the variable i.

18/9/2007 I2A 98 slides 1 25 Richard Bornat
Dept of Computer Science

Over all, program (ii') will probably take about two or
three times as long to execute as program (ii), and
uses one extra memory location.

I’m neglecting the cost of the memory required to hold the
program: program (ii') will probably be a good deal smaller
program (ii). But that’s nitpicking: neither of them uses very
much space.

But program (ii) is a particular solution to a specific
problem. Program (ii') points to a general solution to a
general problem.

I want to write – and cost – a program which moves a
segment A m n[]K &1 of an array rightwards.

m and n are the parameters of the problem, defining its size.

iii for (i=n; i>m; i--) A[i]=A[i-1];

When m n. this does a fixed amount of work (one
assignment, one test, one jump); when m n< it does
that same fixed amount of work, plus exactly m n&
executions each of the body, the increment, the test,
and a jump.

18/9/2007 I2A 98 slides 1 26 Richard Bornat
Dept of Computer Science

Ignoring the fixed work, which is small, this
program’s costs are proportional to m n& in time, and
are one variable in space.

You have just seen your first ‘linear’ cost program.

There isn’t a faster program for this problem,

you might like to persuade yourself of that fact

you should be aware that your argument might depend on the
kind of machine you imagine ...

which is to say that the cost of shifting things around
in an array is ‘linear’ – that is, proportional to the
number of things we are shifting around.

18/9/2007 I2A 98 slides 1 27 Richard Bornat
Dept of Computer Science

A different array-shifting problem

I want to move all the elements which are in even-
numbered positions to the right-hand end of the array,
preserving their order. I don’t care what happens to
the odd-numbered positions.

Here’s a picture of the specification for the particular
case of a twelve-element array:

before

after

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

! " # $ % & ' () * +,

% , (*!? ? ? ? ??

18/9/2007 I2A 98 slides 1 28 Richard Bornat
Dept of Computer Science

I’m first going to write the program just using the
picture, without writing the predicate calculus
specification.

Don’t suppose from this or any other example that I think that
pictures are better or worse than predicate calculus. It’s just
that in this case, writing the predicate calculus gives the game
away!

The program will work left-to-right.

First I want my program to move the ‘!’ value right
one position, to lie next to the ‘#’ value.

Then I want it to shift the ‘!,#’ segment right one
position, to lie next to the ‘%’ value.

Then I want to move ‘!,#,%’ right one position, to
lie next to the ‘,’ value. And so on.

My program does its work on an array of size n,
which can be either even or odd:

iv for (j=0,k=1; k<n; j++,k+=2) {
 for (i=k; i>j; i--) A[i]=A[i-1];
}

18/9/2007 I2A 98 slides 1 29 Richard Bornat
Dept of Computer Science

The inner loop is just program (ii'), shifting the
segment A j k.. &[]1 rightwards one position.

I’ve re-used what I’ve already constructed – that’s a principle
of program design. It doesn’t always lead to a good solution ...

After each step j moves up one, following the
segment, and k moves up two (one to follow the
segment, one to add the next element).

Note that k moves through the odd numbers. Does this happen
with an odd-number-sized array?

18/9/2007 I2A 98 slides 1 30 Richard Bornat
Dept of Computer Science

On the twelve-element array we can see how this
program has the correct result:

beginning of step 1

0 1 2 3 4 5 6 7 8 9 10 11

! " # $ % & ' () * +,

end of step 1,
beginning of step 2

! ! # $ % & ' () * +,

j k

0 1 2 3 4 5 6 7 8 9 10 11

j k

end of step 2,
beginning of step 3

! ! ! # % & ' () * +,

0 1 2 3 4 5 6 7 8 9 10 11

j k

... and so on. This program is indeed stamping on the
elements that it leaves behind.

18/9/2007 I2A 98 slides 1 31 Richard Bornat
Dept of Computer Science

The elements that are to be altered in the twelve-
element example are A 6 11K[]; the predicate calculus
specification is therefore bound to be
< < %()i i6 12 ..something or other .. .

In longhand the specification is

![] = []" ![] = []" ![] = []"
![] = []" ![] = ![]" ![] = []

A A A A A A
A A A A A A

6 0 7 2 8 4
9 6 10 8 11 10

and it doesn’t take infinite ingenuity with arithmetic
to spot that this is equivalent to

$ < % ![] = &() ×[]()i i A i A i6 12 6 2

Then for an n-element array we have

÷ $ < % ![] = & ÷() ×[]()i n i n A i A i n2 2 2

Those with a good grasp of arithmetic

remembering that n ÷() ×2 2 isn’t always n

may like to check this specification carefully, to be
sure that it’s valid whether n is odd or even.

18/9/2007 I2A 98 slides 1 32 Richard Bornat
Dept of Computer Science

The interesting thing about the predicate calculus
specification is that it looks just like an array shift, so
there ought to be a program based on it.

And, of course, there is. It’s a rightwards shift, so we
start at the right-hand end:

v for (i=n-1; i>=n/2; i--) A[i]=A[(i-n/2)*2];

This program isn’t quite as fast as it might be, but
what is interesting is that it is much faster than
program (iv), and its advantage increases as the
problem gets larger (i.e. as n increases).

program (ii') had i > 3 as its COND; program (v) has i n. ÷ 2.
Why does one use (>) and the other (.)?

18/9/2007 I2A 98 slides 1 33 Richard Bornat
Dept of Computer Science

The time taken by program (iv) is
‘quadratic’ in n, and the time taken by
program (v) is linear in n.

We have already seen that the time taken by program
(ii') is roughly proportional to the size k j& of the
segment it shifts.

Program (iv) executes program (ii') repeatedly, the
first time with k j& = 1, the second with k j& = 2, ... ,
the last time with k j n& = ÷() &2 1.

You should know that the sum of a series
1 2+ + +... x is x x &()1 2, which is x x2 2 2& , which
is roughly proportional to x2.

18/9/2007 I2A 98 slides 1 34 Richard Bornat
Dept of Computer Science

Another way of looking at is that the execution times
form a triangle:

... and so on

and everybody knows that the area of a triangle is half
that of a rectangle ...

So the time taken by program (iv) is roughly
proportional to n ÷()2 2, which means it’s roughly
proportional to n2.

But the time taken by program (v) is roughly
proportional to n

by an argument just like that about program ii'

By experiment, in the lab, with large examples you
should be able to demonstrate that this argument has
hit on a truth: program (v) is much faster than
program (iv). The fact that it uses only one variable
instead of three is just icing on the cake.

18/9/2007 I2A 98 slides 1 35 Richard Bornat
Dept of Computer Science

Linear vs. Quadratic time.

This diagram shows why linear-time programs are, in
general, to be preferred to quadratic-time programs.

0 1 2 3 4 5 6 7 8 9
10

Linear (n)
Quadratic (n^2)

0

20

40

60

80

100

The execution time of a quadratic-time program
grows much faster than that of a linear-time program.

18/9/2007 I2A 98 slides 1 36 Richard Bornat
Dept of Computer Science

It doesn’t matter how steeply the linear graph is
sloped, because the quadratic graph grows more
steeply at every step. Eventually it will grow more
steeply than and will overtake the linear graph.

Three diagrams of of 100n (linear) vs n2 (quadratic):

0 1 2 3 4 5 6 7 8 9 10
100n vs n^2, range 0-10 n^2

100n

0

200

400

600

800

1000

18/9/2007 I2A 98 slides 1 37 Richard Bornat
Dept of Computer Science

0 10 20 30 40 50 60 70 80 90 100
100n vs n^2, range 0-100

n^2
100n

0

2000

4000

6000

8000

10000

0
10

0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00100n vs n^2, range 0-1000

n^2
100n

0

200000

400000

600000

800000

1000000

18/9/2007 I2A 98 slides 1 38 Richard Bornat
Dept of Computer Science

If the linear and quadratic graphs cross at some
problem size M, then at 10M the quadratic-time
program must be 100 times slower than the linear-
time program.

When one program is quadratic and the other linear, it
is a complete waste of effort to speed up the quadratic
program.

unless you are sure that the quadratic time program is faster
on small problems and that it will always be used on small
problems.

18/9/2007 I2A 98 slides 1 39 Richard Bornat
Dept of Computer Science

Speeding up the solution

One speed-up is to take repetitive calculations outside
a loop:

v' mid = n/2;
for (i=n-1; i>=mid; i--) A[i]=A[(i-mid)*2];

and again:

v'' mid = n/2;
for (i=n-1,j=(n-1-mid)*2; i>=mid; i--,j-=2)
 A[i]=A[j];

do these change make a significant difference?

Notice, by the way, that once we had a correct program
(program (v)), it was easy to speed it up. The hard part was the
arithmetic, and that had all been done by that stage.

18/9/2007 I2A 98 slides 1 40 Richard Bornat
Dept of Computer Science

Key points
technical language matters.

programming is about minute detail.

correctness; efficiency; correctness vs efficiency.

predicate calculus specifications about arrays.

assignments obliterate as well as copying.

rightward shifts start at the right.

rouigh estimates of cost can tell us a lot.

array shifting is a linear problem.

the area of a triangle is half that of a rectangle.

a quadratic-time program is much slower than a linear-time program,
given a sufficiently large problem.

